The current issue and full text archive of this journal is available at http://www.worldsustainable.org

World Sustainable Development Outlook 2012

287

DEVELOPING LOCAL PROCESSING TECHNOLOGY FOR BLACK AND GREEN TEA AND EVALUATION OF CONFORMANCE TO ISO STANDARD

 'Shamsideen Olusegun Aroyeun, 'Gerald O.Iremiren, 'Sule S.Omolaja, 'Feyisara Abiodun Okelana, 'Olaiwola Olubamiwa, 'Rotimi R. Ipinmoroti, 'Amos A. Oloyede, 'Semiu Olalekan Ogunwolu, 'Andrew Daniel, 'Christiana Olayinka Jayeola,
²Fatai Abiola Sowunmiand ³Lukman Ola Odunmbaku

Abstract

Purpose – This project was designed with the aim of developing a black and green tea processing technology for Nigerian farmers and evaluating the conformance of the quality of the processed tea to the recommended international standard.

Design/methodology/approach – Locally processed and graded black teas were collected from Kakara and Bangoba for analysis. The different grades analyzed were Dust 1, Pekoe fanning (PF), Broken pekoe (BP) and Fibre. Green tea was also processed from twenty-one tea clones selected from the Cocoa Research Institute, Kusuku station's tea plantation located at 1840m above mean sea level and analyzed for quality characteristics. The methods used for the quality of black and green tea analysis were in accordance with the ISO standard. The ISO 9768 method (revised) was used for determining percentage water extract, 5498 for crude fibre, ISO 1575 for percentage total ash, ISO 1577 for acid-insoluble ash. Other additional quality parameters evaluated for black tea were theaflavins (TF), thearubigins (TR) and colour brightness (CBr)

World Sustainable Development Outlook 2012

¹Cocoa Research Institute of Nigeria, PMB, 5244, Ibadan, Oyo State, NIGERIA, Email: aroyeun2000@yahoo.co.uk

²Department of Agricultural Economics, Lagos State University, Ojo, Lagos, NIGERIA

³MoshoodAbiola Polytechnic, Abeokuta, Ogun State, NIGERIA

Copyright © 2012 WASD

from another set of seventeen clones using Flavonost methods. Conformance to the ISO standard was assessed in all tea locally processed by the farmers in comparison to those processed under controlled conditions.

Results/findings – The results obtained in this study revealed that 59.2 per cent of the tea analyzed conformed to ISO 9768, 81.5 per cent to ISO 5498, 77.8 per cent to ISO 1575, 96.3 per cent to ISO 1576, 100 per cent conformed to ISO 1577 and 85.2 per cent to ISO 1578 respectively. In all, only 33 per cent of the processed tea conformed to international standards for black or green tea physical parameters. For black tea, the clones that conformed to the correct TF, TR andCBr were UNK, 367, 19, 74, 354, 368, 369, 353, 357, 143, 14 and 108 respectively.

Originality/value – The use of locally sourced clonal materials that conform to ISO standards from Nigeria could create new products (black and green tea) of high economic value to the farmers.

Practical implications –Production of green tea and black tea can take place locally without loss of quality if good manufacturing and hygiene practices are followed.

Keywords: ISO, Tea quality, TF, TR, CBr, Conformance

Paper type Research paper

INTRODUCTION

Tea beverages (from *Cammeliasinensis*(L.)O. Kuntze) are claimed to be the most widely consumed drinks after water (Owuor*et al.*, 2008). Due to the large demand, commercial production of the plant has been reported from as far as 49° Ninthe outer Carpathians in the former Soviet Union to as far as 33° Sin Natal, South Africa (Shoubo, 1989). The plant has adapted to environments with large climatic variations. These variations in environment and growing conditions are thought to cause variations in tea quality. The production of tea in Nigeria is carried out by the Nigerian Beverage Production Company (NBPC), which is located on the MambillaHighland (1430m above sea level) and the fresh tea leaves are supplied by an average of 2700 farmers, whose membership cuts across all the communities on the Highland. Recently, the NBPC, which is the only teaprocessing company in Nigeria, could not utilize all the fresh leaves supplied by farmers due to the low production capacity of their Lawrie Tea Processor (LTP). Thesefarmers' tea leaves were wasted

Development Outlook 2012

289

World Sustainable and their dependents began to suffer due to loss of income. This led to a mass movement from tea farming to arable farming as farmers began to experience poor eating habits, lack of healthcare and reduced training fortheir children. The standard of living dropped drastically. In order to reduce the poverty caused by this problem, this project was designed to study the effect of local tea processing on quality standardsin black and green tea locally produced in Nigeria. Farmers can then be educated in the correct ways to process their tea locally without necessarily jeopardizing quality.

MATERIALS AND METHODS

Fresh tea leaves were obtained from Mambilla Highland, Nigeria. The tea plantation was located at 1430m-1840m above mean sea level. The plantation belonged to the Cocoa Research Institute of Nigeria, Ibadan, Kusuku, Mambilla. The tea (green and black tea) was processed locally. The black tea was produced using the orthodox method, and the green tea was processed using Chinese methods viz: plucking (1+1), withering, fixing (pan firing), rolling and drying using a conventional oven. Twenty-one clonal materials were processed into green tea and 13 clones were processed into black tea using the orthodox method. The morphological parameters of all the clonal tea materials are presented in Table 1. The 21 fresh tea leaves were processed into green tea leaves comprising 14 clonal materials obtained from tea germplasm plots, which include: clone 228, 318, 68, 35, 61, 363, UNK, 367, 143, 357, 19, 25, 74, and 354. The tea clones used in black tea processing were: UNK, 367, 19, 74, 354, 368, 369, 353, 357, 143, 14, 238 and 108. Clone 318 was also divided into two, 318 LL1/2 was a lowland variety for black tea processing (1+2) and (1+1) of the same clone for green tea production. Another clone, 236, was also divided into two. 236 (sole) and 236 were intercropped with eucalyptus. Clone 318 was processed using Japanese methods (plucking, withering, steaming and drying). Clone 228 was processed using Chinese methods (plucking, withering, fixing, rolling and drying). Other teas analyzed were China tea grown in Nigeria, and natural hybrid tea (NHT). Some other tea samples were collected after processing and grading from farmers in Kakara and Bangoba, which are different green tea producing communities on the Mambilla Highland, Nigeria. The teas collected were of different grades, namely: Dust 1, Pekoe fanning (PF), Broken pekoe (BP) and Fibre (F), all from Kakara. Only BP was collected from Bangoba. In total, twenty-one samples were used.

QUALITY ASSESSMENT

The methods used for assessing the quality of black and green tea analysis were in accordance with ISO standards as shown in Table 2.ISO 5498 for crude fibre, ISO 1575 for percentage total ash, ISO 1577 for acid-insoluble ash.The quality parameters analyzed for black tea, were theaflavins (TF), thearubigins (TR) and colour brightness (CBR) using Roberts and Smith (1963) methods.Conformance to ISO standards were measured in all the samples.

S/N	Tea clones	Shape of leaf	Leaf s Leaf A	erration rea (cm²)	Leaf co Intern	olour odes	Nature of flowering/seed	
1	1 & 2	Small and inward curving leaves	Closed serrated	2 x 1	Dark green	1.2cm	Has many flowers and seeds	
2	367	Curved leaves	Wider	10 x 5	Light	3cm	Rarely with	
3	19	Long, curved leaves	Normal	13 x 5	Light	6cm	No flowers/seeds	
4	74	Long, wide opened	Wider	16 x 7	Light	3cm	Rarely with their	
5	354	Small orange-like	Closed	3.3 x 1.2	Dark	8.5cm	No flowers/seeds	
6	368	Long leaves	Wider	4.5 x 6.5	Light	7cm	No flowers/seeds	
7	369	Zigzag edges of leaves	Closed	12 x 5	Light	6.5cm	No flowers/seeds	
8	353	Slightly curved leaves	Wider	11 x 4.5	Light	6cm	No flowers/seeds	
9	357	Flat roundish leaves	Wider	10 x 5.5	Green	8cm	Less flowers/	
10	143	Roundish flat leaves	Normal	10 x 4.5	Green	5cm	With flowers/	
11 12	14 238	Curved long leaves Curved leaves	Normal Closed	12 x 4.5 13 x 5	Green Green	5.5cm 6cm	No flowers No flowers	
13	25	Long curved leaves	Normal	6.5-7CM	Light	6.5cm	No flowers	
14	108	Wide leaves with	Wider	15.5 x 6.5	Light	7cm	No flowers	
15	363	Curved medium sized	Closed	12 x 5	Light	6cm	No flowers	
16	35	Wide leaves	Normal	13 x 6	Light green to vellow	3cm	Rarely with flowers	
17	68	Long curved leaves	Closed	11.5 x 4	Light	6cm	With flowers	
18	61	Orange-like leaves	Closed	11 x 4	Dark	5cm	Pronounced flowers/seeds	Table I: Morphological
19	228	Small orange-like leaves	Closed	6 x 3 cm	Light green to	5cm	With flowers	description of 24
20	236	Small flat leaves	Closed serration	10 x 5	yellow Dark brown	2cm	With pronounced	tea cional varieties on tea germplasm
21	318	Long curved leaves	Closed	12 x 5	leaves Green	6cm	flowers/seeds Rarely with flowers	plot at CRIN, Kusuku

RESULTS AND DISCUSSION

World Sustainable Development As shown in Table 1, it was observed that 59.2% of the analyzed tea Outlook 2012 samples conformed to ISO 9768, 81.5% to ISO 5498, 77.8% to ISO 1575 and 96.3% to ISO 1576 and 100% to ISO 1577 and 85.2% to ISO 1578 respectively.

> Table 4 shows that the flavour components of the clone UNK seemed to be unique. Its TF of 0.8145% and TR of 9.5% were not significantly different from black tea processed in Nyassaland with TF and TR of 0.855% and 9.5% respectively (Roberts and Smith, 1963; Owuor et al., 2008). Another possible factor that could also be responsible for the different contents of TF and TR as evidenced in this study is fermentation time. Black tea processed from Nigeria appeared to have high theaflavin and thearubigin values because its fermentation timewas higher than that of Malawi tea, which is fermented for 110minutes, a fermentation time less than that used in this study (120minutes). The difference in fermentation time is reflected in the values obtained for both the TF and TR of tea from Kenya, Malawi and Nigeria (Table 5). The theaflavin

	Characteristics	Requirement	0	Test method
		Black tea	Green tea	
	Water extract % m/m Minimum	32	32	
	Total ash % m/m			
	Maximum	8	8z	
	Minimum	4	4	ISO 1575
	Water-soluble ash % (m/m) of total ash Minimum	45	45	ISO 1576
	Alkalinity of water- soluble ash as KOH % (m/m)			
	Minimum	1.0	1.0	
	Maximum	3.0	3.0	ISO 1578
	Acid-insoluble ash % m/m Maximum			
Table 2:	, in the second s	1.0	1.0	ISO 1577
requirements for black and green tea	Crude fibre % m/m Maximum	16.5	16.5	ISO 5498

291

S/No	Sea clone	% H ₂ 0 Ex- tract	% Total Ash	% H ₂ 0 Soluble Ash	% Acid- in- soluble Ash	% Al- kaline- Insol- uble Ash	% Crude Fibre	% Moisture Content	Developing local processing technology for black and green
1	236 under Eucalyptus	41.6	6.2	66.6	0	1.1	8.3	8.94	of conformance to
2	228	42	6.5	67	0	1.1	8.3	6.72	150 standard 292
3	318	42	6.2	67	0	1.0	12.5	9.69	
4	68	42	6.3	66.6	0	1.1	12.5	3.36	
5	35	43.4	4.3	50	0	0.9	8.6	11.72	
6	61	42	4.2	50	0	0.7	20.8	9.57	
7	363	21.7	6.3	67	0	1.3	20.8	15.22	
8	236(sole)	42	6.3	67	0	0.9	4.3	9.37	
9	SRD 318	42	6.5	67	0	1.1	13.0	3.73	
10	PRD 228	43.4	6.5	67	0	1.3	8.7	11.31	
11	UNK	21.7	9.6	67	0	1.3	8.3	9.43	
12	367	22.7	6.5	67	0	0.8	4.5	-	
13	143	22.7	6.5	66.7	0	1.6	12.5	8.0	
14	357	21.7	6.4	66.7	0	1.3	8.7	6.0	
15	19	43.5	6.5	66.7	0	1.3	8.7	8.0	
16	25	41.7	4.3	50	0	1.3	9.1	8.0	
17	74	43.5	6.4	66.7	0	1.1	8.3	6.0	
18	354	43.5	6.5	66.7	0	0.9	4.3	8.0	
19	318(LL) 21/2	43.5	8.5	50.0	0	1.4	9.1	6.0	
20	318 (LL) 11/2	45.5	6.5	66.7	0	1.5	8.7	8.0	
21	China tea	22.7	6.5	66.7	0	1.4	13.6	8.0	
22	Natural Hybrid tea	21.7	6.4	66.7	0	1.4	8.3	6.0	
23	BT Dust –1(KK)	22.7	8.9	50.0	0	1.2	4.6	10.0	
24	BT (PF) (KK)	41.7	8.7	50.0	0	1.1	8.7	8.0	
25	BT (BP) (KK)	22.7	6.7	66.7	0	1.3	8.7	10.0	
26	BT (BP) BA	22.7	8.9	50.0	0	1.3	16.7	10.0	
27	F(KK)	22.7	15.9	28.6	0	1.0	18.2	12.0	Table 3:

۲ green tea in Nigeria

World Sustainable	S/N0		% TF	% TR	% TF: % TR	
Outlook 2012	1	UNK	0.8145	9.5	0.08	
	2	367	0.374	8.35	0.05	
	3	19	0.36	7.40	0.05	
	4	74	0.558	12.82	0.05	
293	5	354	1.001	9.05	0.11	
	6	368	1.823	9.16	0.20	
	7	369	0.207	17.40	0.01	
	8	353	0.196	5.29	0.04	
	9	357	0.45	7.59	0.06	
	10	143	0.997	16.39	0.06	
Table 4:	11	14	0.306	9.48	0.03	
Clonal variation in	12	238	0.997	10.95	0.09	
the theaflavin (%)	13	108	0.198	8.85	0.02	
contents of black	$\frac{1}{\%}$ TF = 6.25 x E _c x f ₁ ; % TR = 12.E _D + 6.25 (E _A - E _c) x f ₂					

teas

$IF = 6.25 \text{ x } E_c \text{ x } t_1; \text{ % } IR = 12.E_D + 6.25 (E_A - E_c) \text{ x}$
--

	Particular	Source	Fermentation	Time
	Theaflavin (µmole/g)	Kenya	110 min.	27.2
		Malawi	110 min.	21.5
		Nigeria	120 min.	22.3
	Thearubigin (%)	Kenya	110min	15.5
Tabla F.		Malawi	110 min.	9.21
Comparison of		Nigeria	120 min.	10.04
quality of black tea				
from Nigeria to tea	Brightness (%)	Kenya	110 min.	25.8
from other tea-		Malawi	110 min.	22.5
of the world due to		Nigeria	120 min.	15.7
fermentation time				

of Nigerian black tea was second to that of Kenya, which is known globally for producing very high quality black tea. The TFtrends were in the following order: Kenya $(27.2 \mu mole/g) > Nigeria (22.3 \mu mole/g)$ > Malawi (21.5µmole/g). Clone UNK showed a higher value than the TF reported by Roberts and Smith (1963) and Owuoret al. (2008) for Malawi tea. Although the fermentation time used for the Malawi tea was the same asthat used in Kenyan tea, a similar TF percentage to Malawi tea and a lower TF than Nigerian tea would be expected, but this was not the case. This result could be due to differences in the clonal properties of fresh tea leaves in the processing of black tea from the three countries. The method of black tea processing used in this study is different from the popular CTC method, yet the quality is not significantly different from some tea processed using this method. The E380//E460 ratio of CTC processed tea is a good index of quality and the tea processed in Nigeria did not differ significantly from the ratio of CTC manufactured BP (Broken pekoe) grade in NE India. Some values of TF and TR are also considered query grades due to their high TF or TR values when compared to the normal good grade values (Roberts and Smith, 1963). Clone 368, with % TF= 18.3%, was considered a query grade, since its value is higher than query grade black tea of 1.63%TF from South India, as reported by Roberts and Smith (1963). These exaggerated values could be due to analytical error. The values for TF and TR in black tea used in this study are not significantly different from tea from other countries, including India and SriLanka, producing Ceylon tea. The % TR of black tea in Nigeria was not significantly different from mediumquality tea from Sri Lanka. Clone 19, with TF at 0.36%, is also not significantly different from the BP grade of Ceylon tea. At 7.4%TR for the same clone 19, this value is also similar to the TR percentage of query grade tobacco cut manufactured black tea from South India (Maria et al., 2004). Some of the quality values for black tea in Nigeria, such as TF and TR, also compared favourably with tea from Russia. Clone 14 results showedTF (0.31%) and TR (9.48%) values that were not significantly different from a sample of black tea from Russia (TF 0.33%, TR, 9.5%), which is a quality regarded as plain tea. The colour brightness percentage (CBR) of clone 14 (15.9%) compares favourably with the CBR of tea conventionally processed in Nyassaland with a CBR value of 18.8%, which was prepared with distilled water. This indicates that water used in the preparation of tea infusion can have a significant influence on the characteristic colour brightness of tea. These colour brightness results were also not significantly different from those of Assam orange pekoe prepared with mains water(15.0%). Clone 143 also followed this trend

World Sustainable in colour brightness (CBR = 18.7%). Clones 143 and 238, with %TF of Development Outlook 2012
295
295
295
and 238, with %TF of Nigerian clone 357 used in this study is higher (0.45%) than LapsongSouchoung (0.19%) without significant differences in TR,clone 357 having 7.59% and LapsongSouchoung 7.8%.Clone 108 had 353% TF = 0.196, which is favourably comparable with LapsongSouchoung from China

CONCLUSION

This study has established the conformance of both green and black tea produced in Nigeria to international standards. The quality of the black tea comparesfavourably with black tea from other leading black tea processing countries of the world, including India, Sri Lanka, Nyassaland, Russia and China.

REFERENCES

- Owuor, P.O., Obanda, M., Hastings, E.N. and Wilson, L.M. (2008), "Influence of region of production on clonal black tea chemical characteristics", *Food Chemistry* Vol. 108, pp. 263-271.
- Roberts, E.A.H. and Smith, R.E. (1963), "PhenolicsubstancesofmanufacturedtealI. Spectrophotometric evaluation of tea liquors", *Journal* of the Science of Food and Agriculture, Vol. 14, pp. 889-900.
- Shoubo, H. (1989), "Meteorology of the tea plant in China. A review", Agriculture and Forestry Meterology, Vol. 47, pp. 19-30.

ABOUT THE AUTHORS

Dr Shamsideen Olusegun Aroyeun assumed duty at the Cocoa Research Institute of Nigeria in June, 1999 and attained the rank of Chief Research Officer in the crop processing Unit in 2009 under the Product Development Programme. He completed his PhD programme in the department of Food Technology at the University of Ibadan, Nigeria. Dr Aroyeun has won two international awards on tea in 2004 and 2007 in Shizouka Japan. He is an international scientist who has presented papers in Hungary, Italy, China, South Africa, Japan and most currently the United States of America. He is a prolific writer with many international journal papers to his credit. He is currently the Head of Station of Cocoa Research Institute of Nigeria, Kusuku, Mambilla.

Professor Gerald O Iremirenis the former executive Director of the Cocoa Research Institute of Nigeria, Ibadan. He is a professor of Agronomy and has taught at manyuniversities, including the University of Benin andthe Federal University of Technology, Akure. Professor Iremiren is a former commissioner of Agriculture in Edo State.

Dr Sule S Omolaja is an assistant Director at the Cocoa Research Institute of Nigeria and technical adviser to the Executive Director. He is a plant breeder of international standing, the Head of Group inplant breeding and the programme leader in thetea programme.

Dr Feyisara Abiodun Okelanais the present Acting Executive Director/ Chief Executive Officer, Cocoa Research Institute of Nigeria, Ibadan. She is an entomologist and a research scientist in coffee and tea entomology.

Dr Olaiwola Olubamiwa is the Research Director at the Cocoa Research Institute of Nigeria and the Head of Department of Product Development. He is a seasoned scientist in biochemistry/nutrition, withpapers in many international journals to his credit. He has presented papers at various international fora.

Dr Rotimi R Ipinmoroti is an international scientist who completed his PhD on tea, followed by his post-doctoral fellowship programme in Japan under JIRCAS. He is the Head of Station, Cocoa Research Institute of Nigeria, Uhomora, Edo State, Nigeria. He has presented many research papers at international conferences.

Mr Amos A Oloyede, is an Agronome in the agronomy group of the Cocoa Research Institute of Nigeria. He works extensively on the agronomy of Cocoa Kola, coffee and tea. He is the acting Coordinator of the National Cocoa Seed Garden Project of the Federal Government of Nigeria.

Dr Semiu Olalekan Ogunwoluholds a PhD in food processing/ preservation technology. He has published many scholarly papers

World Sustainablein chocolate research and has a wide research experience in cashewDevelopmentprocessing technology and cocoa processing.

Outlook 2012	
Outlook 2012	Mr Andrew Danielis a soil scientist at the Cocoa Research Institute of
	Nigeria, conducting research on cocoa, coffee and tea. He has worked
	extensively on soil fertility.

297 Mrs Christiana OlayinkaJayeola is currently the Head of Division in the Crop Processing and Utilization Unit and the programme leader for the product development programme. She has wide international experience in cocoa processing, cashew processing, kola processing and coffee processing.

Mr FataiAbiolaSowunmi is a lecturer at Lagos State University, He is an agricultural economist and a doctoral student at the University of Ibadan, Nigeria. He has many international journal publications to his credit.

Mr Lukman Ola Odunmbakuis a PhD student at the University of Agriculture, Abeokuta, Ogun State, Nigeria, in the department of Food Science and Technology. He lectures in food technology at MoshoodAbiola Polytechnic.